Position Detection System PDS using DGPS
For Container Tracking

S 57632ZA
Contents

1 Introduction ... 4
 1.1 Systems Function .. 4
 1.2 Container Tracking .. 4
 1.3 DGPS Positioning ... 4
 1.4 Preconditions for Operation 5
2 Mounting / Cabling ... 6
 2.1 Components ... 6
 2.2 Cabling ... 7
3 Hardware ... 8
 3.1 Control Unit HG 61430-A ... 8
 3.1.1 Operating Elements .. 8
 3.1.2 Display Elements .. 8
 3.1.3 Interface Connectors .. 9
 3.1.3.1 ETHERNET .. 9
 3.1.3.2 PROFIBUS ... 9
 3.1.3.3 TERMINAL .. 9
 3.1.3.4 PROG .. 10
 3.1.3.5 GPS ... 11
 3.1.3.6 ANT1 .. 11
 3.1.3.7 ANT2 .. 11
 3.1.3.8 GND ... 12
 3.1.3.9 SI01 .. 12
 3.1.3.10 SI02 ... 13
 3.1.3.11 SI03 ... 13
 3.1.3.12 SI04 ... 13
 3.1.3.13 ENCODER1 .. 14
 3.1.3.14 ENCODER2 .. 14
 3.1.3.15 UB .. 15
 3.1.3.16 IO ... 15
 3.1.3.17 CAN1 .. 15
 3.1.3.18 CAN2 .. 16
 3.1.3.19 POWER ... 16
 3.2 Antennas ... 17
4 Basic Definitions ... 19
 4.1 Determining important values for the crane 19
 4.2 Determining important values for a block 19
5 Parameter Setting ... 21
 5.1 Service Interface ... 21
 5.1.1 Main Menu ... 21
 5.1.2 Display Main Data .. 22
 5.1.2.1 Group GPS Basevector 23
 5.1.2.2 Group Block Coordinates 23
5.1.2.3 Group PDS ... 23
5.1.2.4 Group PLC -> PDS ... 24
5.1.2.5 Group PDS -> PLC ... 24
5.1.2.6 Group PDS -> TOS ... 25
5.1.2.7 Group TOS -> PDS ... 26
5.1.2.7.1 System state ... 26
5.1.3 Display receiver data ... 27
5.1.4 Display satellites data ... 29
5.1.5 Parameter Interface ... 30
5.1.6 Parameter GPS .. 32
5.1.7 Set Blocks ... 33
5.1.8 Set Rows ... 34
5.1.9 Set Stack ... 35
5.1.10 Set Tiers ... 36
5.1.11 Save Settings ... 37
5.1.12 Upload Settings (PC -> HG61430) 37
5.1.13 Download Settings (HG61430 -> PC) 39
5.1.14 Configure Logging .. 39
5.1.15 Start Logging .. 41
5.2 Trimble GPS Receiver .. 42
6 Communication Protocol: Profibus 45
6.1 Direction: PLC -> PDS (Outputs) 45
6.2 Direction: PDS -> PLC (Inputs) .. 46
7 Maintenance .. 47
8 Technical Data .. 48
9 List of Figures .. 49
10 List of Tables .. 51
11 Handbook Guidelines ... 52
12 Copyright and Terms of Liability 53
12.1 Copyright .. 53
12.2 Exclusion of Liability .. 53
12.3 Trade Marks and Company Names 53
1. Introduction

1.1 Systems Function

With the, in general use, Global Positioning System (GPS) it is possible to determine a geographical position. The commonly used standard GPS provides an accuracy of approx. 10 m.

With the help of additional equipment and under certain area conditions it is possible to achieve a geographic position with an accuracy of up to ±30 cm.

1.2 Container Tracking

The temporary storage of containers by use of visual means with manual confirmation leads to an error rate in the storage handling which disrupts the efficient turn over time of the container ships so that therefore it is better to use GPS to control the positioning and documentation of containers within the container port environment.

It has been possible for years for Rubber Tired Gantry Cranes (RTG), working on container transport within a seaport, to communicate with the controlling container management system, via a data Radio Transceiver, when it picks up or sets down a container at a predesignated position within the container yard. This takes some of the load off of the driver as well as reduce the error rate, which a complicated and time exhaustive container search entails.

1.3 DGPS Positioning

![DGPS structure](image)

Figure 1 DGPS structure
This accuracy is not enough for the presented system. Therefore alongside the GPS system fitted to the crane (mobile unit) a further stationary GPS system (reference station) is set up. The position of the reference station can be exactly calculated. So it can compare its actual position with the current position identified by the satellite signal and transmits this error factor via a wireless data transceiver to the mobile units. These can then calculate their positions with an accuracy of up to ±30 cm (differential GPS; DGPS).

1.4 Preconditions for Operation

It is essential to pay attention to the fact that obstacles, that are higher than the horizon of the GPS antennas, may generally have a bad influence on the satellite reception. As a result of these shadings and/or reflections, the accuracy of the GPS may decrease. Even a total breakdown of the GPS might be possible. Therefore it is advisable, to include the Götting KG already in the project planning phase.
2 Mounting / Cabling

2.1 Components

The device is to be mounted onto a 35 mm top hat rail according to EN50022.

Figure 2 Overview of Components
2.2 Cabling

- **Pos. 1 (HW Cab00055):**
 RG58, 2 m completely manufactured with TNC assembly socket (straight) and N socket (straight)

- **Pos. 2 (HW Cab00042):**
 RG58, 0.5 m TNC connector (straight) and N socket (straight), attached to the GPS antenna and sealed with heat shrink

- **Pos. 3 + 4 (2x HW Cab00079):**
 ECOFLEX10, project specific length one side with mounted N connector (straight) and one N connector (straight) for on site installation

- **Pos. 5 + 6 (2x HW Cab00042):**
 RG58, 2 m completely manufactured with TNC connector (straight) and N socket (straight)

- **Pos. 7 (HW Cab00091):**
 Project specific cable supplied by Götting within scope of Radio Modem

- **Pos. 8 (not within scope of supply):**
 2 x 0.75 mm² onto Phoenix terminal
 Cable for 24 V power supply between UPS and HG 61430
3 Hardware

3.1 Control Unit HG 61430-A

3.1.1 Operating Elements
- Membrane keyboard with 22 keys
- Slot for SD Card

3.1.2 Display Elements
- 320x240 pixel graphic enabled LED backlight

<table>
<thead>
<tr>
<th>LED</th>
<th>Meaning of illuminated/flashing LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>Power supply OK</td>
</tr>
<tr>
<td>LAN</td>
<td>Ethernet communication</td>
</tr>
<tr>
<td>LINK</td>
<td></td>
</tr>
<tr>
<td>PROFIBUS</td>
<td>Profibus communication</td>
</tr>
<tr>
<td>GPS PWR</td>
<td>Power supply GPS receiver OK</td>
</tr>
<tr>
<td>GPS CORR</td>
<td>Receiving DGPS correction data</td>
</tr>
<tr>
<td>GPS SVs</td>
<td>Receiving GPS satellites</td>
</tr>
<tr>
<td>RADIO TX</td>
<td>Transmitting via radio modem</td>
</tr>
<tr>
<td>RADIO RX</td>
<td>Receiving via radio modem</td>
</tr>
</tbody>
</table>

Table 1 Meaning of illuminated/flashing LEDs
3.1.3 Interface Connectors

3.1.3.1 ETHERNET

Figure 6 Draft of ETHERNET connector

Function: Communication with superior control unit and/or PC
Interface: Ethernet
Connector: RJ-45

3.1.3.2 PROFIBUS

Figure 7 Draft of PROFIBUS connector

Function: Communication with a superior control unit
Interface: Profibus DP
Connector: Sub-D 9pin (DE9) female

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wire B</td>
<td>I/O</td>
</tr>
<tr>
<td>4</td>
<td>RTS</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>O</td>
</tr>
<tr>
<td>6</td>
<td>+5V</td>
<td>O</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Wire A</td>
<td>I/O</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Pin Allocation of PROFIBUS connector

3.1.3.3 TERMINAL

Figure 8 Outline of TERMINAL connector

Function: Communication with PC (commissioning and service)
Connector: Sub-D 9pin (DE9) female
PROG

Function:
Programming interface between PC and HG61430

Interface:

Connector:
Sub-D 9 pin (DE9) female

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TxD</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>RxD</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Pin allocation for TERMINAL connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TxD</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>RxD</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Pin allocation of PROG connector
3.1.3.5 GPS

Figure 10 Outline of GPS connector

Function: Communication with the GPS receiver (software update and parameter setting)

Connector: Sub-D 9pin (DE9) female

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TxD</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>RxD</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Pin allocation of GPS connector

3.1.3.6 ANT1

Figure 11 Outline of the ANT1 connector

Function: Antenna connection for GPS Antenna 1

Connector: TNC

3.1.3.7 ANT2

Figure 12 Outline of the ANT2 connector

Function: Not used.

Connector: TNC
3.1.3.8 GND

Figure 13 Outline of the GND connector

Function: GND connectors for IO’s
Connector: Phoenix contact MCV1.5/4-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 Pin allocation of GND connector

3.1.3.9 SIO1

Figure 14 Outline of SIO1 connector

Function: Serial interface for correction data radio modem
Connector: Phoenix contact MCV1.5/3-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TxD</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>RxD</td>
<td>I</td>
</tr>
</tbody>
</table>

Table 7 Pin Allocation of SIO1 connector
3.1.3.10 SIO2

Figure 15 Outline of the SIO2 connector

Function: Communication with superior control unit
Connector: Phoenix contact MCV1.5/3-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TxD</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>RxD</td>
<td>I</td>
</tr>
</tbody>
</table>

Table 8 Pin allocation SIO2 connector

3.1.3.11 SIO3

Figure 16 Outline of the SIO3 connector

Function: Communication with VMT
Connector: Phoenix contact MCV1.5/3-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TxD</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>RxD</td>
<td>I</td>
</tr>
</tbody>
</table>

Table 9 Pin allocation of SIO3 connector

3.1.3.12 SIO4

NOTE! Do not use! Only internal interface.

Figure 17 Outline of the SIO4 connector

Function: Internal interface to the GPS receiver. do not use!
Connector: Phoenix contact MCV1.5/3-GF-3.5
3.1.3.13 ENCODER1

Figure 18 Outline of the ENCODER1 connector

Function: Not used.

Interface: 5 Volt to 24 Volt

Connector: Phoenix contact MCV1.5/5-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UB (power supply)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+5 Volt (max. 100 mA)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Channel A1</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>Channel B1</td>
<td>I</td>
</tr>
</tbody>
</table>

Table 10 Pin allocation of ENCODER1 connector

3.1.3.14 ENCODER2

Figure 19 Outline of the ENCODER2 connector

Function: Not used.

Interface: 5 Volt to 24 Volt

Connector: Phoenix contact MCV1.5/5-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UB (power supply)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+5 Volt (max. 100 mA)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Channel A2</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>Channel B2</td>
<td>I</td>
</tr>
</tbody>
</table>

Table 11 Pin allocation of ENCODER2 connector
3.1.3.15 UB

Figure 20 Outline of the UB connector

Function: Power supply for IOs
Connector: Phoenix contact MCV1.5/4-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UB (power supply)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UB (power supply)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>UB (power supply)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UB (power supply)</td>
<td></td>
</tr>
</tbody>
</table>

Table 12 Pin allocation of UB connector

3.1.3.16 IO

Figure 21 Outline of the IO connector

Function: switched I/O depending on the application
Connector: Phoenix contact MCV1.5/4-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IO1</td>
<td>I/O</td>
</tr>
<tr>
<td>2</td>
<td>IO2</td>
<td>I/O</td>
</tr>
<tr>
<td>3</td>
<td>IO3</td>
<td>I/O</td>
</tr>
<tr>
<td>4</td>
<td>IO4</td>
<td>I/O</td>
</tr>
</tbody>
</table>

Table 13 Pin allocation IO

3.1.3.17 CAN1

Figure 22 Outline of the CAN1 connector

Function: CAN bus for communication with superior control unit
Interface: CAN bus according to ISO 11898-1
Connector: Phoenix contact MCV1.5/3-GF-3.5
Hardware

3.1.3.18 CAN2

Function: CAN bus currently not in use, for future expansions

Interface: CAN bus according to ISO 11898-1

Connector: Phoenix contact MCV1.5/3-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN_GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CAN_HIGH</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CAN_LOW</td>
<td></td>
</tr>
</tbody>
</table>

Table 14 Pin allocation of CAN1 connector

3.1.3.19 POWER

Function: Interface of supply voltage

Connector: Phoenix contact MCV1.5/2-GF-3.5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin allocation</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UB (power supply 24 Volt)</td>
<td></td>
</tr>
</tbody>
</table>

Table 16 Pin allocation POWER connector
3.2 Antennas

- The GPS antennas should
 - be installed on top of the RTG
 - be mounted at the highest point of the crane, above all obstacles
 - be separated as far apart as possible

- The RF antenna
 - should be fixed at the highest possible point on the RTG
 - should not tower above the GPS-antennas
 - requires a free line-of-sight in all directions
Figure 26 Dimensions, mounting brackets and picture of the Trimble GPS antenna
4 Basic Definitions

4.1 Determining important values for the crane

Figure 27 Basic Operational Parameters

Figure 27 shows the values that the system needs to know in order to calculate the geometrical centre point of the crane.

4.2 Determining important values for a block

When defining a block or route which a crane should take, the following values are important:

Figure 28 Block Parameters

P1 is the starting point of the crane in this block. Via Y_min and Y_max the system is informed about the sideward expansion of the block. P2 is the end point of the crane in this block. The connection between P1 and P2 indicates the direction of the blocks. It is automatically calculated for every block how much it is rotated towards the base coordinate system.'
Figure 29 The three block coordinates Stack, Row and Tier
5 Parameter Setting

NOTE! Only especially trained personnel should alter system settings since wrong values can lead to restricted system functionality or even system failure!

5.1 Service Interface

The service interface is used for setting the parameters and the further system analysis. To do so, connect a terminal with ANSI emulation to the serial interface. The interface parameters are preset at: No parity, 8 data bits and 1 stop bit. It is possible to select difference transmission rates. Please select 115,200 baud.

It is possible to re-output the current display setting by pressing the space key. The password for protected areas is: 3141.

5.1.1 Main Menu

Following the system start-up, the main menu is displayed. From this point, it is possible to enter the different functions.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>display of all data relevant for sensor fusion</td>
</tr>
<tr>
<td>F2</td>
<td>display of GPS position data, fix status and accuracy</td>
</tr>
<tr>
<td>F3</td>
<td>display of satellite data</td>
</tr>
<tr>
<td></td>
<td>parameters of the interface</td>
</tr>
<tr>
<td></td>
<td>parameters of the GPS</td>
</tr>
</tbody>
</table>

Table 17 Select options of main menu (part 1 of 2)
5.1.2 Display Main Data

This display shows all data that refer to the sensor fusion.

Key	Description
3 | parameters of the blocks
4 | parameters of the rows
5 | parameters of the stack
6 | parameters of the tiers
7 | save changed settings
8 | transmit parameter file from PC into HG61430
9 | transmit parameter file from HG61430 into PC
A | menu for setting parameters for the data recording output
B | data recording

Table 17 Select options of main menu (part 2 of 2)

Figure 31 Screenshot: Menu Display Main Data
5.1.2.1 Group GPS Basevector

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos X</td>
<td>X component of the GPS position with reference to the base coordinate system</td>
</tr>
<tr>
<td>Pos Y</td>
<td>Y component of the GPS position with reference to the base coordinate system</td>
</tr>
</tbody>
</table>

Table 18 Menu Display Main Data: Group GPS Basevector

5.1.2.2 Group Block Coordinates

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos X</td>
<td>X component of the GPS position with reference to the block coordinate system</td>
</tr>
<tr>
<td>Pos Y</td>
<td>Y component of the GPS position with reference to the block coordinate system</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Accuracy of the GPS system</td>
</tr>
</tbody>
</table>

Table 19 Menu Display Main Data: Group Block Coordinates

5.1.2.3 Group PDS

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>Current block name as defined during set-up</td>
</tr>
<tr>
<td>Row</td>
<td>Current row number</td>
</tr>
<tr>
<td>Stack</td>
<td>Current stack number</td>
</tr>
<tr>
<td>Tier</td>
<td>Current tier number</td>
</tr>
<tr>
<td>Acc. Code</td>
<td>Current accuracy according to the following table:</td>
</tr>
<tr>
<td>1</td>
<td><= 0.3 m</td>
</tr>
<tr>
<td>2</td>
<td><= 0.4 m</td>
</tr>
<tr>
<td>3</td>
<td><= 0.5 m</td>
</tr>
<tr>
<td>4</td>
<td><= 0.6 m</td>
</tr>
<tr>
<td>5</td>
<td><= 0.7 m</td>
</tr>
<tr>
<td>6</td>
<td><= 0.8 m</td>
</tr>
<tr>
<td>7</td>
<td><= 0.9 m</td>
</tr>
<tr>
<td>8</td>
<td><= 1.0 m</td>
</tr>
<tr>
<td>9</td>
<td>> 1.0 m</td>
</tr>
</tbody>
</table>

Table 20 Menu Display Main Data: Group PDS
5.1.2.4 Group PLC -> PDS

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>The following requests are possible</td>
</tr>
<tr>
<td></td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>04</td>
</tr>
<tr>
<td>Trolley</td>
<td>Current trolley position</td>
</tr>
<tr>
<td>Hoist</td>
<td>Current hoist position</td>
</tr>
<tr>
<td>Spreader</td>
<td>Current spreader position</td>
</tr>
<tr>
<td></td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>06</td>
</tr>
<tr>
<td>Weight</td>
<td>Current weight of container</td>
</tr>
<tr>
<td>Cont ID</td>
<td>Container ID</td>
</tr>
</tbody>
</table>

Table 21 Menu Display Main Data: Group PLC -> PDS

5.1.2.5 Group PDS -> PLC

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>The following acknowledge messages are possible</td>
</tr>
<tr>
<td></td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>04</td>
</tr>
</tbody>
</table>

Table 22 Menu Display Main Data: Group PDS -> PLC
5.1.2.6 Group PDS -> TOS

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Msg ID</td>
<td>Incremental message number with values from 0 to 9</td>
</tr>
<tr>
<td>Msg Type</td>
<td>PDS event</td>
</tr>
<tr>
<td>1</td>
<td>Lift</td>
</tr>
<tr>
<td>2</td>
<td>Set Down</td>
</tr>
<tr>
<td>Block</td>
<td>Current block name as defined during set-up</td>
</tr>
<tr>
<td>Row</td>
<td>Current row number</td>
</tr>
<tr>
<td>Stack</td>
<td>Current stack number</td>
</tr>
<tr>
<td>Tier</td>
<td>Current tier number</td>
</tr>
<tr>
<td>Spreader</td>
<td>Current spreader position</td>
</tr>
<tr>
<td>2</td>
<td>20 Foot</td>
</tr>
<tr>
<td>4</td>
<td>40 Foot</td>
</tr>
<tr>
<td>5</td>
<td>45 Foot</td>
</tr>
<tr>
<td>T</td>
<td>2 x 20 Foot</td>
</tr>
<tr>
<td>L</td>
<td>2 x 20 Foot L (left aligned)</td>
</tr>
<tr>
<td>R</td>
<td>2 x 20 Foot R (right aligned)</td>
</tr>
<tr>
<td>0</td>
<td>undefined</td>
</tr>
<tr>
<td>Acc. Code</td>
<td>Current accuracy according to the following table:</td>
</tr>
<tr>
<td>1</td>
<td><= 0.3 m</td>
</tr>
<tr>
<td>2</td>
<td><= 0.4 m</td>
</tr>
<tr>
<td>3</td>
<td><= 0.5 m</td>
</tr>
<tr>
<td>4</td>
<td><= 0.6 m</td>
</tr>
<tr>
<td>5</td>
<td><= 0.7 m</td>
</tr>
<tr>
<td>6</td>
<td><= 0.8 m</td>
</tr>
<tr>
<td>7</td>
<td><= 0.9 m</td>
</tr>
<tr>
<td>8</td>
<td><= 1.0 m</td>
</tr>
<tr>
<td>9</td>
<td>> 1.0 m</td>
</tr>
</tbody>
</table>

Table 23 Menu Display Main Data: Group PDS -> TOS
5.1.2.7 Group TOS -> PDS

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Msg ID</td>
<td>Incremental message number with values from 0 to 9</td>
</tr>
<tr>
<td>Msg Type</td>
<td>TOS acknowledge</td>
</tr>
<tr>
<td></td>
<td>8 OK</td>
</tr>
<tr>
<td></td>
<td>9 Error</td>
</tr>
<tr>
<td>Msg Ack</td>
<td>Last Message ID from PDS (see Table 23 on page 25)</td>
</tr>
</tbody>
</table>

Table 24 Menu Display Main Data: Group TOS -> PDS

5.1.2.7.1 System state

<table>
<thead>
<tr>
<th>Hex Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>system OK</td>
</tr>
<tr>
<td>00000001</td>
<td>Parameters faulty</td>
</tr>
<tr>
<td>00000002</td>
<td>no data received from GPS receiver</td>
</tr>
<tr>
<td>00000004</td>
<td>no base vector from GPS receiver</td>
</tr>
<tr>
<td>00000008</td>
<td>no correction data received</td>
</tr>
<tr>
<td>00000010</td>
<td>GPS accuracy insufficient for tracking</td>
</tr>
<tr>
<td>00000020</td>
<td>CAN 1 communication faulty</td>
</tr>
<tr>
<td>00000040</td>
<td>Profibus communication faulty</td>
</tr>
</tbody>
</table>

Table 25 Menu Display Main Data: System state
5.1.3 Display receiver data

This menu shows the current position determined by the DGPS.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTC</td>
<td>Universal Time Coordinated</td>
</tr>
<tr>
<td>Diff. Data Age</td>
<td>age of DGPS correction data</td>
</tr>
<tr>
<td>Status</td>
<td>GPS system status</td>
</tr>
<tr>
<td></td>
<td>- autonomous: GPS without base station correction data (accuracy several meters)</td>
</tr>
<tr>
<td></td>
<td>- DGPS: GPS with base station correction data (accuracy approx. 1 meter)</td>
</tr>
<tr>
<td></td>
<td>- RTK (Float): GPS with correction data in RTK mode (Real Time Kinematic sub-meter accuracy)</td>
</tr>
<tr>
<td></td>
<td>- RTK (Fix): GPS with correction data in RTK mode (Real Time Kinematic centimeter accuracy)</td>
</tr>
<tr>
<td>SVs used</td>
<td>number of used satellites (space vehicles)</td>
</tr>
<tr>
<td>Position</td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>latitude in degrees and minutes (antenna position)</td>
</tr>
<tr>
<td>Longitude</td>
<td>longitude in degrees and minutes (antenna position)</td>
</tr>
<tr>
<td>Altitude</td>
<td>height above sea level (antenna position)</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Main Axis</td>
<td>accuracy of the GPS position</td>
</tr>
<tr>
<td>PDOP</td>
<td>geometrical dilution of precision in cubic space.</td>
</tr>
</tbody>
</table>

Table 26 Menu Display receiver data (part 1 of 2)
Parameter Setting

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDOP</td>
<td>geometrical dilution of precision in a horizontal layer.</td>
</tr>
<tr>
<td>VDOP</td>
<td>geometrical dilution of precision in vertical direction.</td>
</tr>
<tr>
<td>Base Vector</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>distance between mobile GPS antenna and base station GPS antenna in east direction</td>
</tr>
<tr>
<td>Y</td>
<td>distance between mobile GPS antenna and base station GPS antenna in north direction</td>
</tr>
<tr>
<td>Z</td>
<td>height difference between mobile GPS antenna and base station GPS antenna</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEA GGA</td>
<td></td>
</tr>
<tr>
<td>GSOF Position Time</td>
<td></td>
</tr>
<tr>
<td>GSOF Tangent Plane Delta</td>
<td></td>
</tr>
<tr>
<td>GSOF PDOP Info</td>
<td>Number of received messages since last switch-on</td>
</tr>
<tr>
<td>GSOF Position Sigma Info</td>
<td></td>
</tr>
<tr>
<td>GSOF SV Detailed Info</td>
<td></td>
</tr>
<tr>
<td>GSOF Current Time</td>
<td></td>
</tr>
</tbody>
</table>

Table 26 Menu Display receiver data (part 2 of 2)
5.1.4 Display satellites data

This menu outputs the satellite data.

Terminal (PC)

![Screenshot: Menu display satellites data](image)

Control Unit (LCD)

Table 27 Menu display satellites data

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>indicates via which channel the satellite signals are received by the GPS receiver</td>
</tr>
<tr>
<td>PRN</td>
<td>number of satellites</td>
</tr>
<tr>
<td>System</td>
<td>Shows the satellite system in use, one of: GPS / GLONASS / SBAS correction data</td>
</tr>
<tr>
<td>Elevation</td>
<td>angle in degrees, between the horizon and the elevation of the satellite above the horizon.</td>
</tr>
<tr>
<td>Azimuth</td>
<td>horizontal angle under which the satellite is received; North is 0°; the angle is rotates clockwise.</td>
</tr>
<tr>
<td>SNR L1</td>
<td>signal-to-noise ratio in dB on the L1 frequency; this value is okay whenever it is > 30 for satellites with an elevation < 20° and approx. 50 for satellites with an elevation > 70°.</td>
</tr>
<tr>
<td>SNR L2</td>
<td>signal-to-noise ratio in dB on the L2 frequency; this value is okay whenever it is > 30 for satellites with an elevation < 20° and approx. 40 for satellites with an elevation > 70°.</td>
</tr>
<tr>
<td>Status</td>
<td>Trimble manual page 6-25</td>
</tr>
<tr>
<td>Used</td>
<td>indicates whether the corresponding satellite is used for the current position calculation</td>
</tr>
</tbody>
</table>
5.1.5 Parameter Interface

Set the interface parameters.

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>set the HG 614300 display contrast values</td>
</tr>
</tbody>
</table>
| 1 | sets the baud rate of the terminal interface. This change becomes active upon the next switch-on of the unit. In case the baud rate is not known upon connection of the PC, it is possible to read it out of the LCD display of the HG 61430. Other interface settings: 8 data bits, no parity, 1 stop bit, no flow control. It is possible to select one of the following values:
 - 9600 bd
 - 19200 bd
 - 38400 bd
 - 57600 bd
 - 115200 bd |
| 2 | provides the protocol of the RS 232 interface (SIO2) to the superior computer. The following protocol is available:
 - Teklogix |
| 3 | provides the transmission rate (baud rate) of the RS 232 interface (SIO2) to the superior computer. The following options are available:
 - 9600 bd
 - 19200 bd
 - 38400 bd
 - 57600 bd
 - 115200 bd |

Figure 34 Screenshot: Menu Parameter Main
Parameter Setting

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4 | provides the features of the RS 232 interface (SIO2) to the superior computer. The following options are available:
- 8,N,1 -> 8 data bits, no parity, 1 stop bit
- 8,E,1 -> 8 data bits, even parity, 1 stop bit
- 8,O,1 -> 8 data bits, uneven parity, 1 stop bit
- 8,N,2 -> 8 data bits, no parity, 2 stop bits
- 8,E,2 -> 8 data bits, even parity, 2 stop bits
- 8,O,2 -> 8 data bits, uneven parity, 2 stop bits |
| 5 | provides the configuration of the RS 232 interface (SIO3) for the connected components. Following options are available:
- disabled
- Vector Heading |
| 6 | provides the transmission rate for the CAN interface 1. The following options are available:
- 50 Kbit/s
- 125 Kbit/s
- 250 Kbit/s
- 500 Kbit/s
- 1 Mbit/s |
| 7 | provides the configuration for the CAN interface 1. The following options are available:
- disabled
- CFG 1 |
| 8 | enables or disables the Profibus interface |
| 9 | Input of Profibus address: 0 to 126 |
| A | the Ethernet interface is not yet included in the software and it is therefore not possible to set any parameters. |
| F3 | internally, a direct connection between the RF modem and the connector PROG, that is accessible externally, is created (LCD only) |

Table 28 Options in Menu Parameter Main (part 2 of 2)
5.1.6 Parameter GPS

Set the GPS parameters.

Description

- **Input 1**: Vehicle number

- **Input 2**: Vehicle type

 The type of vehicle indicates, which vehicle models are used for the position calculation. Currently the following vehicle models are available:

 - RTG

- **Input 3**: X offset of the GPS antenna (direction of travel)

- **Input 4**: Y offset of the GPS antenna (crosswise to direction of travel)

- **Input 5**: Minimum accuracy of the GPS system

- **Input 6**: The Lock-in range defines the range of tolerance (+/- the value entered) for the measured GPS position compared to the mapped position.

 This can be set for blocks, rows, stacks and tiers.

Table 29 Options of the menu Parameter GPS
5.1.7 Set Blocks

In this menu, the block coordinate systems are set.

Terminal (PC)

![Screenshot: Menu Set Blocks]

Table 30 Options of menu Set Blocks (part 1 of 2)

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![image](select existing block)</td>
<td>select an existing block</td>
</tr>
<tr>
<td>![image](block code)</td>
<td>code of the block shown under I, that is transferred to the superior control system.</td>
</tr>
<tr>
<td>![image](start point X)</td>
<td>X-coordinate of the starting point (P1) of the block number shown under I within the base coordinate system.</td>
</tr>
<tr>
<td>![image](start point Y)</td>
<td>Y-coordinate of the starting point (P1) of the block number shown under I within the base coordinate system.</td>
</tr>
<tr>
<td>![image](end point X)</td>
<td>X-coordinate of end point (P2) of the block number shown under I within the shown base coordinate system.</td>
</tr>
<tr>
<td>![image](end point Y)</td>
<td>Y-coordinate of end point (P2) of the block number shown under I within the shown base coordinate system.</td>
</tr>
<tr>
<td>![image](accept position)</td>
<td>accept X and Y-coordinate of P1 of the block shown under I from current, averaged position</td>
</tr>
<tr>
<td>![image](accept position)</td>
<td>accept X and Y-coordinate of P2 of the block shown under I from current, averaged position</td>
</tr>
<tr>
<td>![image](create new block)</td>
<td>create new block</td>
</tr>
</tbody>
</table>
In case more than one RTG is to be commissioned, it is advisable to transfer the parameters determined for the first crane to all following cranes. This way, the crane parameters as well as the block parameters are transferred to the other cranes and it is not necessary to map the terminal again with each crane.

5.1.8 Set Rows

In this menu, the row coordinates inside a block are set.

NOTE! Before altering these values the desired block has to be chosen in the menu Set Blocks, see section 5.1.7 on page 33.
5.1.9 Set Stack

In this menu, the stack coordinates inside a row are set.

NOTE! Before altering these values the desired block has to be chosen in the menu Set Blocks, see section 5.1.7 on page 33.
5.1.10 Set Tiers

In this menu, the tier coordinates are set.

Table 32 Options of menu Set Rows

<table>
<thead>
<tr>
<th>Manual Input</th>
<th>Use Position from PLC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>Trolley Position Truck Lane</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>Trolley Position Stack A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Trolley Position Stack B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Trolley Position Stack C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>Trolley Position Stack D</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>Trolley Position Stack E</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>Trolley Position Stack F</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>Trolley Position Stack G</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>Trolley Position Stack H</td>
</tr>
<tr>
<td>9</td>
<td>J</td>
<td>Trolley Position Stack J</td>
</tr>
</tbody>
</table>

Terminal (PC)

Figure 39 Screenshot: Menu Set Tiers
5.1.11 Save Settings
Use this menu in order to save all settings permanently to the non-volatile memory.

5.1.12 Upload Settings (PC → HG61430)
This update enables uploading the parameter files from the PC to the Control Unit HG 61430.

<table>
<thead>
<tr>
<th>Manual Input</th>
<th>Use Position from PLC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>Hoist Position Tier 0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>Hoist Position Tier 1</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>Hoist Position Tier 2</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>Hoist Position Tier 3</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>Hoist Position Tier 4</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>Hoist Position Tier 5</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>Hoist Position Tier 6</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>Hoist Position Tier 7</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>Hoist Position Tier 8</td>
</tr>
<tr>
<td>9</td>
<td>J</td>
<td>Hoist Position Tier 9</td>
</tr>
</tbody>
</table>

Table 33 Options of menu Set Rows
Figure 40 Screenshot: Parameter Update

When the menu shown above appears, the submenu send file must be selected from the Hyperterm section DATA TRANSMISSION. It is necessary to set X Modem (not 1K X Modem) as protocol. Select the file to be transmitted and press the button Send. This action starts the data transfer.
5.1.13 Download Settings (HG61430 → PC)

This menu enables downloading parameter files from the Control Unit HG 61430 to the PC.

Terminal (PC)

![Screenshot: Parameter Download](image)

When the menu shown above appears, the submenu receive file must be selected from the Hyperterm section DATA TRANSMISSION. It is necessary to set X Modem (not 1K X Modem) as protocol. Then press the receive button, assign a name to the file, e.g. crane_1.par and start the data transfer.

5.1.14 Configure Logging

The logging function is a tool for trouble shooting. It is possible to log data from the Control Unit HG 61430 during operation and send them by e-mail to Götting KG. As it is not possible to log all data via the serial interface within a 100 ms pattern, it is necessary to select data that may be relevant.
Figure 42 Screenshot: Menu Configure Logging

The menu shown above enables selecting groups of data via keys. All groups marked with a 1 are recorded. E. g. when pressing 2, the group GPS Pos would be unmarked. This means, there would be a 0. The second hit of 2 results in the selection of the group GPS Pos and thus it will again be included in the log file.

An alternative method is to edit the Log mask with the key 3. Usually a Götting engineer would give you a matching log mask. Setting a log mask means, that all relevant entries would be set in a single step.
5.1.15 Start Logging

This menu enables recording data during operation, either for troubleshooting or for simple documentation.

Terminal (PC)

![Screenshot: Start Logging](image)

Figure 43 Screenshot: Start Logging

Once the above shown menu appears, it is necessary to start the recording with the submenu Data Transmission - record text file in Hyperterm. Then press the space key.

NOTE! If the sequence of these actions is altered, meaning that the space key is pressed first and then the recording started, the headlines are lost and therefore the allocation of the data and columns is lost!
5.2 Trimble GPS Receiver

The following screenshots show how configuration files delivered by Götting are imported into the GPS receiver.

NOTE! This configuration must not be altered!

Figure 44 Screenshot: Configuration of the GPS Receiver, step 1

Figure 45 Screenshot: Configuration of the GPS Receiver, step 2
Figure 46 Screenshot: Configuration of the GPS Receiver, step 3

Figure 47 Screenshot: Configuration of the GPS Receiver, step 4

Figure 48 Screenshot: Configuration of the GPS Receiver, step 5
Figure 49 Screenshot: Configuration of the GPS Receiver, step 6

Figure 50 Screenshot: Configuration of the GPS Receiver, step 7

Figure 51 Screenshot: Configuration of the GPS Receiver, step 8
Communication Protocol: Profibus

6.1 Direction: PLC → PDS (Outputs)

<table>
<thead>
<tr>
<th>Byte-No.</th>
<th>Byte order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>PLC Status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Highbyte</td>
<td>Trolley Position</td>
</tr>
<tr>
<td>3</td>
<td>Lowbyte</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Highbyte</td>
<td>Hoist Position</td>
</tr>
<tr>
<td>5</td>
<td>Lowbyte</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Spreader Mode</td>
</tr>
<tr>
<td>7</td>
<td>Highbyte</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Lowbyte</td>
<td>Container Weight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>One 20 footer.</td>
</tr>
<tr>
<td>2</td>
<td>One 40 footer.</td>
</tr>
<tr>
<td>3</td>
<td>One 45 footer.</td>
</tr>
<tr>
<td>4</td>
<td>Two 20 footers: the orientation of the spreader to the yard positions is not known.</td>
</tr>
<tr>
<td>5</td>
<td>The two 20 footers moved were oriented so that the one on the L end of the spreader was in the position with the lowest string value.</td>
</tr>
<tr>
<td>6</td>
<td>The two 20 footers moved were oriented so that the one on the R end of the spreader was in the position with the lowest string value.</td>
</tr>
</tbody>
</table>

Table 34 Profibus Protocol PLC → PDS
Communication Protocol: Profibus

<table>
<thead>
<tr>
<th>Byte-No.</th>
<th>Byte order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>U</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Table 34 Profibus Protocol PLC → PDS

6.2 Direction: PDS → PLC (Inputs)

<table>
<thead>
<tr>
<th>Byte-No.</th>
<th>Byte order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>PDS Status</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1: Set Down Event received (hold 1 until Bit cleared in PLC status)</td>
</tr>
<tr>
<td>2</td>
<td>1: Lift Event received (hold 1 until Bit cleared in PLC status)</td>
</tr>
<tr>
<td>3</td>
<td>1: PDS Message sent (hold 1 until Bit cleared in PLC status)</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 35 Profibus Protocol PDS → PLC
7 Maintenance

The system is maintenance free.
8 Technical Data

<table>
<thead>
<tr>
<th>G_61430-A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Casing and dimensions</td>
<td>aluminum, see also Figure 4 on page 8</td>
</tr>
<tr>
<td>Weight</td>
<td>1350 g</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 to 70°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-25 to 80°C</td>
</tr>
<tr>
<td>Protection class</td>
<td>IP30</td>
</tr>
<tr>
<td>Relative humidity at 25°C</td>
<td>95 % (without dew)</td>
</tr>
<tr>
<td>Interfaces</td>
<td>see section 3.1.3 “Interface Connectors” on page 13</td>
</tr>
<tr>
<td>Power supply</td>
<td>nominal voltage 24 Volt (18 to 30 Volt)</td>
</tr>
<tr>
<td>Current consumption</td>
<td>250 mA at 24 Volt</td>
</tr>
</tbody>
</table>

Table 36 Technical Data G_61430-A
9 List of Figures

Figure 1 DGPS structure.. 4
Figure 2 Overview of Components ... 6
Figure 3 Cabling ... 7
Figure 4 Dimensions, LEDs and connectors... 8
Figure 5 Photo of the Control Unit... 8
Figure 6 Draft of ETHERNET connector... 9
Figure 7 Draft of PROFIBUS connector... 9
Figure 8 Outline of TERMINAL connector.. 9
Figure 9 Outline of PROG connector... 10
Figure 10 Outline of GPS connector... 11
Figure 11 Outline of the ANT1 connector.. 11
Figure 12 Outline of the ANT2 connector.. 11
Figure 13 Outline of the GND connector.. 12
Figure 14 Outline of SIO1 connector... 12
Figure 15 Outline of the SIO2 connector... 13
Figure 16 Outline of the SIO3 connector... 13
Figure 17 Outline of the SIO4 connector... 13
Figure 18 Outline of the ENCODER1 connector... 14
Figure 19 Outline of the ENCODER2 connector... 14
Figure 20 Outline of the UB connector... 15
Figure 21 Outline of the IO connector.. 15
Figure 22 Outline of the CAN1 connector.. 15
Figure 23 Outline of the CAN2 connector.. 16
Figure 24 Outline of the POWER connector... 16
Figure 25 Mounting places for the Antennas... 17
Figure 26 Dimensions, mounting brackets and picture of the Trimble GPS antenna.. 18
Figure 27 Basic Operational Parameters.. 19
Figure 28 Block Parameters.. 19
Figure 29 The three block coordinates Stack, Row and Tier.......................... 20
Figure 30 Screenshot: Main menu GPS.. 21
Figure 31 Screenshot: Menu Display Main Data... 22
Figure 32 Screenshot: Menu Display Receiver Data...................................... 27
Figure 33 Screenshot: Menu display satellites data...................................... 29
Figure 34 Screenshot: Menu Parameter Main... 30
Figure 35 Screenshot: Menu Parameter GPS... 32
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Screenshot: Menu Set Blocks</td>
<td>33</td>
</tr>
<tr>
<td>37</td>
<td>Screenshot: Menu Set Rows</td>
<td>34</td>
</tr>
<tr>
<td>38</td>
<td>Screenshot: Menu Set Stacks</td>
<td>35</td>
</tr>
<tr>
<td>39</td>
<td>Screenshot: Menu Set Tiers</td>
<td>36</td>
</tr>
<tr>
<td>40</td>
<td>Screenshot: Parameter Update</td>
<td>38</td>
</tr>
<tr>
<td>41</td>
<td>Screenshot: Parameter Download</td>
<td>39</td>
</tr>
<tr>
<td>42</td>
<td>Screenshot: Menu Configure Logging</td>
<td>40</td>
</tr>
<tr>
<td>43</td>
<td>Screenshot: Start Logging</td>
<td>41</td>
</tr>
<tr>
<td>44</td>
<td>Screenshot: Configuration of the GPS Receiver, step 1</td>
<td>42</td>
</tr>
<tr>
<td>45</td>
<td>Screenshot: Configuration of the GPS Receiver, step 2</td>
<td>42</td>
</tr>
<tr>
<td>46</td>
<td>Screenshot: Configuration of the GPS Receiver, step 3</td>
<td>43</td>
</tr>
<tr>
<td>47</td>
<td>Screenshot: Configuration of the GPS Receiver, step 4</td>
<td>43</td>
</tr>
<tr>
<td>48</td>
<td>Screenshot: Configuration of the GPS Receiver, step 5</td>
<td>43</td>
</tr>
<tr>
<td>49</td>
<td>Screenshot: Configuration of the GPS Receiver, step 6</td>
<td>44</td>
</tr>
<tr>
<td>50</td>
<td>Screenshot: Configuration of the GPS Receiver, step 7</td>
<td>44</td>
</tr>
<tr>
<td>51</td>
<td>Screenshot: Configuration of the GPS Receiver, step 8</td>
<td>44</td>
</tr>
</tbody>
</table>
10 List of Tables

Table 1	Meaning of illuminated/flashing LEDs ...	8
Table 2	Pin Allocation of PROFI BUS connector ..	9
Table 3	Pin allocation for TERMINAL connector ..	10
Table 4	Pin allocation of PROG connector ..	10
Table 5	Pin allocation of GPS connector ..	11
Table 6	Pin allocation of GND connector ...	12
Table 7	Pin Allocation of SIO1 connector ..	12
Table 8	Pin allocation SIO2 connector ..	13
Table 9	Pin allocation of SIO3 connector ..	13
Table 10	Pin allocation of ENCODER1 connector ...	14
Table 11	Pin allocation of ENCODER2 connector ...	14
Table 12	Pin allocation of UB connector ..	15
Table 13	Pin allocation of IO ...	15
Table 14	Pin allocation of CAN1 connector ..	16
Table 15	Pin allocation of CAN2 connector ..	16
Table 16	Pin allocation POWER connector ..	16
Table 17	Select options of main menu ...	21
Table 18	Menu Display Main Data: Group GPS Basevector ...	23
Table 19	Menu Display Main Data: Group Block Coordinates ...	23
Table 20	Menu Display Main Data: Group PDS ...	23
Table 21	Menu Display Main Data: Group PLC -> PDS ..	24
Table 22	Menu Display Main Data: Group PDS -> PLC ..	24
Table 23	Menu Display Main Data: Group PDS -> TOS ..	25
Table 24	Menu Display Main Data: Group TOS -> PDS ..	26
Table 25	Menu Display Main Data: System state ..	26
Table 26	Menu Display receiver data ...	27
Table 27	Menu display satellites data ..	29
Table 28	Options in Menu Parameter Main ..	30
Table 29	Options of the menu Parameter GPS ...	32
Table 30	Options of menu Set Blocks ..	33
Table 31	Options of menu Set Rows ..	35
Table 32	Options of menu Set Rows ..	36
Table 33	Options of menu Set Rows ..	37
Table 34	Profibus Protocol PLC -> PDS ...	45
Table 35	Profibus Protocol PDS -> PLC ...	46
Table 36	Technical Data G_61430-A ...	48
11 Handbook Guidelines

At the time this manual was printed, the following symbols and marks were used in all Göttin KG documentations:

- For security advices, the following symbols stand for different degrees of danger and importance:

 NOTE!

 ATTENTION!

 WARNING!

- Further information or advices are indicated as follows:

 TIP!

 - Program texts and variables are indicated through the use of the Script Courier.

 - Whenever the pressing of letter keys is required for program entries, the required letter keys are indicated as such (for any programs of Göttin KG small and capital letters are equally valid).

 - Sections, drawings and tables are subsequential numbers throughout the complete document. In addition, each documents includes a list of contents showing the page numbers following the front. If a document exceeds 10 pages, it also has a drawings list and a list of tables on the last few pages. If required, in case a document is correspondingly long and complex, a index is added in the back.

 - Each document shows a small table including meta information, such as developer, author, revision and date of issue, on the front page. The information regarding revision and date of issue are also included in the bottom line on each page of the document. This way it is possible to clear identify the source document for each bit of information.

 - Online version (PDF) and printed handbook are always generated from the same source. Due to the consequent use of Adobe FrameMaker for these documentations, it is possible to use the cross hints and content entries (including page numbers of the index) of the PDF file for automatical transfer to the corresponding content.
12 Copyright and Terms of Liability

12.1 Copyright

This manual is protected by copyright. All rights reserved. Violations are subject to pe- nal legislation of the Copyright.

12.2 Exclusion of Liability

Any information given is to be understood as system description only, but is not to be taken as guaranteed features. Any values are reference values. The product charac- teristics are only valid if the systems are used according to the description.

This instruction manual has been drawn up to the best of our knowledge. Installation, setup and operation of the device will be on the customer’s own risk. Liability for conse-quential defects is excluded. We reserve the right for changes encouraging technical improvements. We also reserve the right to change the contents of this manual without having to give notice to any third party.

12.3 Trade Marks and Company Names

Unless stated otherwise, the herein mentioned logos and product names are legally protected trade marks of Götting KG. All third party product or company names may be trade marks or registered trade marks of the corresponding companies.